12/07/2020

Online Multi-Kernel Learning with Graph-Structured Feedback

Pouya M Ghari, Yanning Shen

Keywords: General Machine Learning Techniques

Abstract: Multi-kernel learning (MKL) exhibits reliable performance in nonlinear function approximation tasks. Instead of using one kernel, it learns the optimal kernel from a pre-selected dictionary of kernels. The selection of the dictionary has crucial impact on both the performance and complexity of MKL. Specifically, inclusion of a large number of irrelevant kernels may impair the accuracy, and increase the complexity of MKL algorithms. To enhance the accuracy, and alleviate the computational burden, the present paper develops a novel scheme which actively chooses relevant kernels. The proposed framework models the pruned kernel combination as feedback collected from a graph, that is refined 'on the fly.' Leveraging the random feature approximation, we propose an online scalable multi-kernel learning approach with graph feedback, and prove that the proposed algorithm enjoys sublinear regret. Numerical tests on real datasets demonstrate the effectiveness of the novel approach.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICML 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers