02/02/2021

Near-Optimal MNL Bandits Under Risk Criteria

Guangyu Xi, Chao Tao, Yuan Zhou

Keywords:

Abstract: We study MNL bandits, which is a variant of the traditional multi-armed bandit problem, under risk criteria. Unlike the ordinary expected revenue, risk criteria are more general goals widely used in industries and business. We design algorithms for a broad class of risk criteria, including but not limited to the well-known conditional value-at-risk, Sharpe ratio, and entropy risk, and prove that they suffer a near-optimal regret. As a complement, we also conduct experiments with both synthetic and real data to show the empirical performance of our proposed algorithms.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38948234
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers