06/12/2021

Bandits with Knapsacks beyond the Worst Case

Karthik Abinav Sankararaman, Aleksandrs Slivkins

Keywords: theory, bandits, online learning

Abstract: Bandits with Knapsacks (BwK) is a general model for multi-armed bandits under supply/budget constraints. While worst-case regret bounds for BwK are well-understood, we present three results that go beyond the worst-case perspective. First, we provide upper and lower bounds which amount to a full characterization for logarithmic, instance-dependent regret rates.Second, we consider ``"simple regret" in BwK, which tracks algorithm's performance in a given round, and prove that it is small in all but a few rounds. Third, we provide a "general ``reduction" from BwK to bandits which takes advantage of some known helpful structure, and apply this reduction to combinatorial semi-bandits, linear contextual bandits, and multinomial-logit bandits. Our results build on the BwK algorithm from prior work, providing new analyses thereof.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at NeurIPS 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers