02/02/2021

Theoretical Analyses of Multi-Objective Evolutionary Algorithms on Multi-Modal Objectives

Benjamin Doerr, Weijie Zheng

Keywords:

Abstract: Previous theory work on multi-objective evolutionary algorithms considers mostly easy problems that are composed of unimodal objectives. This paper takes a first step towards a deeper understanding of how evolutionary algorithms solve multi-modal multi-objective problems. We propose the OneJumpZeroJump problem, a bi-objective problem whose single objectives are isomorphic to the classic jump functions benchmark. We prove that the simple evolutionary multi-objective optimizer (SEMO) cannot compute the full Pareto front. In contrast, for all problem sizes n and all jump sizes k in [4..n/2-1], the global SEMO (GSEMO) covers the Pareto front in Θ((n-2k)n^k) iterations in expectation. To improve the performance, we combine the GSEMO with two approaches, a heavy-tailed mutation operator and a stagnation detection strategy, that showed advantages in single-objective multi-modal problems. Runtime improvements of asymptotic order at least k^Ω(k) are shown for both strategies. Our experiments verify the substantial runtime gains already for moderate problem sizes. Overall, these results show that the ideas recently developed for single-objective evolutionary algorithms can be effectively employed also in multi-objective optimization.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38948839
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers