02/02/2021

Paragraph-level Commonsense Transformers with Recurrent Memory

Saadia Gabriel, Chandra Bhagavatula, Vered Shwartz, Ronan Le Bras, Maxwell Forbes, Yejin Choi

Keywords:

Abstract: Human understanding of narrative texts requires making commonsense inferences beyond what is stated in the text explicitly. A recent model, COMET, can generate such inferences along several dimensions such as pre- and post-conditions, motivations, and mental states of the participants. However, COMET was trained on short phrases, and is therefore discourse-agnostic. When presented with each sentence of a multi-sentence narrative, it might generate inferences that are inconsistent with the rest of the narrative. We present the task of discourse-aware commonsense inference. Given a sentence within a narrative, the goal is to generate commonsense inferences along predefined dimensions, while maintaining coherence with the rest of the narrative. Such large-scale paragraph-level annotation is hard to get and costly, so we use available sentence-level annotations to efficiently and automatically construct a distantly supervised corpus. Using this corpus, we train PARA-COMET, a discourse-aware model that incorporates paragraph-level information to generate coherent commonsense inferences from narratives. PARA-COMET captures both semantic knowledge pertaining to prior world knowledge, and episodic knowledge involving how current events relate to prior and future events in a narrative. Our results confirm that PARA-COMET outperforms the sentence-level baselines, particularly in generating inferences that are both coherent and novel.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38949334
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers