04/07/2020

Conditional Augmentation for Aspect Term Extraction via Masked Sequence-to-Sequence Generation

Kun Li, Chengbo Chen, Xiaojun Quan, Qing Ling, Yan Song

Keywords: Conditional Augmentation, Aspect Extraction, sentiment analysis, data augmentation

Abstract: Aspect term extraction aims to extract aspect terms from review texts as opinion targets for sentiment analysis. One of the big challenges with this task is the lack of sufficient annotated data. While data augmentation is potentially an effective technique to address the above issue, it is uncontrollable as it may change aspect words and aspect labels unexpectedly. In this paper, we formulate the data augmentation as a conditional generation task: generating a new sentence while preserving the original opinion targets and labels. We propose a masked sequence-to-sequence method for conditional augmentation of aspect term extraction. Unlike existing augmentation approaches, ours is controllable and allows to generate more diversified sentences. Experimental results confirm that our method alleviates the data scarcity problem significantly. It also effectively boosts the performances of several current models for aspect term extraction.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ACL 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers