19/10/2020

An event-oriented neural ranking model for news retrieval

Lin Zhao, Wanhui Qian, Liangjun Zang, Fuqing Zhu, Yijun Lu, Ruixuan Li, Jizhong Han, Songlin Hu

Keywords: event-oriented, news retrieval, neural ranking model

Abstract: Event-oriented news retrieval (ENR) is the task of retrieving news articles related to the specific event in response to the event-oriented query. Previous approaches usually focus on optimizing traditional retrieval models through hand-crafted features from the perspective of new articles. However, these approaches often fail to work well in reality, as they do not consider the essential natures of the event, i.e., dynamics, coupling. In this paper, we propose a novel and effective event-oriented neural ranking model for news retrieval (ENRMNR). Our model exploits a deep attention mechanism to tackle the dynamics and coupling derived from event evolution. Specifically, the word-level bidirectional attention allows the model to identify which query words about the subevent are related to the news article words, and vice-versa, in order to tackle the dynamics. Moreover, the hierarchical attention at passage-level and document-level allows it to capture fine-grained event representations for the coupling between different events within a news article. Experimental results on real-world datasets demonstrate that ENRMNR model significantly outperforms competitive models.

The video of this talk cannot be embedded. You can watch it here:
https://dl.acm.org/doi/10.1145/3340531.3412082#sec-supp
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CIKM 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers