02/02/2021

Multi-SpectroGAN: High-Diversity and High-Fidelity Spectrogram Generation with Adversarial Style Combination for Speech Synthesis

Sang-Hoon Lee, Hyun-Wook Yoon, Hyeong-Rae Noh, Ji-Hoon Kim, Seong-Whan Lee

Keywords:

Abstract: While generative adversarial networks (GANs) based neural text-to-speech (TTS) systems have shown significant improvement in neural speech synthesis, there is no TTS system to learn to synthesize speech from text sequences with only adversarial feedback. Because adversarial feedback alone is not sufficient to train the generator, current models still require the reconstruction loss compared with the ground-truth and the generated mel-spectrogram directly. In this paper, we present Multi-SpectroGAN (MSG), which can train the multi-speaker model with only the adversarial feedback by conditioning a self-supervised hidden representation of the generator to a conditional discriminator. This leads to better guidance for generator training. Moreover, we also propose adversarial style combination (ASC) for better generalization in the unseen speaking style and transcript, which can learn latent representations of the combined style embedding from multiple mel-spectrograms. Trained with ASC and feature matching, the MSG synthesizes a high-diversity mel-spectrogram by controlling and mixing the individual speaking styles (e.g., duration, pitch, and energy). The result shows that the MSG synthesizes a high-fidelity mel-spectrogram, which has almost the same naturalness MOS score as the ground-truth mel-spectrogram.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38948436
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers