03/05/2021

Debiasing Concept-based Explanations with Causal Analysis

Taha Bahadori, David Heckerman

Keywords: Interpretability, Concept-based Explanation

Abstract: Studying the concept-based explanation techniques, we provided evidences for potential existence of spurious association between the features and concepts due to unobserved latent variables or noise. We proposed a new causal prior graph that models the impact of the noise and latent confounding fron the estimated concepts. We showed that using the labels as instruments, we can remove the impact of the context from the explanations. Our experiments showed that our debiasing technique not only improves the quality of the explanations, but also improve the accuracy of predicting labels through the concepts. As future work, we will investigate other two-stage-regression techniques to find the most accurate debiasing method.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICLR 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers