07/09/2020

The Resistance to Label Noise in K-NN and DNN Depends on its Concentration

Amnon Drory, Oria Ratzon, Shai Avidan, Raja Giryes

Keywords: Deep Neural Networks, K-NN, Label Noise, Randomly Spread Noise, Locally Concentrated Noise, Noise Models, Noise Types

Abstract: We investigate the classification performance of K-nearest neighbors (K-NN) and deep neural networks (DNNs) in the presence of label noise. We first show empirically that a DNN’s prediction for a given test example depends on the labels of the training examples in its local neighborhood. This motivates us to derive a realizable analytic expression that approximates the multi-class K-NN classification error in the presence of label noise, which is of independent importance. We then suggest that the expression for K-NN may serve as a first-order approximation for the DNN error. Finally, we demonstrate empirically the proximity of the developed expression to the observed performance of K-NN and DNN classifiers. Our result may explain the already observed surprising resistance of DNN to some types of label noise. It also characterizes an important factor of it, showing that the more concentrated the noise the greater is the degradation in performance.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at BMVC 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers