23/08/2020

Heidegger: Interpretable temporal causal discovery

Mehrdad Mansouri, Ali Arab, Zahra Zohrevand, Martin Ester

Keywords: graph search, randomized-block design, temporal causal discovery, pattern recognition

Abstract: Temporal causal discovery aims to find cause-effect relationships between time-series. However, none of the existing techniques is able to identify the causal profile, the temporal pattern that the causal variable needs to follow in order to trigger the most significant change in the outcome. Toward a new horizon, this study introduces the novel problem of Causal Profile Discovery, which is crucial for many applications such as adverse drug reaction and cyber-attack detection. This work correspondingly proposes Heidegger to discover causal profiles, comprised of a flexible randomized block design for hypothesis evaluation and an efficient profile search via on-the-fly graph construction and entropy-based pruning. Heidegger’s performance is demonstrated/evaluated extensively on both synthetic and real-world data. The experimental results show the proposed method is robust to noise and flexible at detecting complex patterns.

The video of this talk cannot be embedded. You can watch it here:
https://dl.acm.org/doi/10.1145/3394486.3403220#sec-supp
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at KDD 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers