03/05/2021

Learning a Latent Simplex in Input Sparsity Time

Ainesh Bakshi, Chiranjib Bhattacharyya, Ravi Kannan, David Woodruff, Samson Zhou

Keywords: low-rank approximation, numerical linear algebra, Latent Simplex

Abstract: We consider the problem of learning a latent $k$-vertex simplex $K\in\mathbb{R}^d$, given $\mathbf{A}\in\mathbb{R}^{d\times n}$, which can be viewed as $n$ data points that are formed by randomly perturbing some latent points in $K$, possibly beyond $K$. A large class of latent variable models, such as adversarial clustering, mixed membership stochastic block models, and topic models can be cast in this view of learning a latent simplex. Bhattacharyya and Kannan (SODA 2020) give an algorithm for learning such a $k$-vertex latent simplex in time roughly $O(k\cdot\text{nnz}(\mathbf{A}))$, where $\text{nnz}(\mathbf{A})$ is the number of non-zeros in $\mathbf{A}$. We show that the dependence on $k$ in the running time is unnecessary given a natural assumption about the mass of the top $k$ singular values of $\mathbf{A}$, which holds in many of these applications. Further, we show this assumption is necessary, as otherwise an algorithm for learning a latent simplex would imply a better low rank approximation algorithm than what is known. We obtain a spectral low-rank approximation to $\mathbf{A}$ in input-sparsity time and show that the column space thus obtained has small $\sin\Theta$ (angular) distance to the right top-$k$ singular space of $\mathbf{A}$. Our algorithm then selects $k$ points in the low-rank subspace with the largest inner product (in absolute value) with $k$ carefully chosen random vectors. By working in the low-rank subspace, we avoid reading the entire matrix in each iteration and thus circumvent the $\Theta(k\cdot\text{nnz}(\mathbf{A}))$ running time.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICLR 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers