19/04/2021

Multi-split reversible transformers can enhance neural machine translation

Yuekai Zhao, Shuchang Zhou, Zhihua Zhang

Keywords:

Abstract: Large-scale transformers have been shown the state-of-the-art on neural machine translation. However, training these increasingly wider and deeper models could be tremendously memory intensive. We reduce the memory burden by employing the idea of reversible networks that a layer’s input can be reconstructed from its output. We design three types of multi-split based reversible transformers. We also devise a corresponding backpropagation algorithm, which does not need to store activations for most layers. Furthermore, we present two fine-tuning techniques: splits shuffle and self ensemble, to boost translation accuracy. Specifically, our best models surpass the vanilla transformer by at least 1.4 BLEU points in three datasets. Our large-scale reversible models achieve 30.0 BLEU in WMT’14 En-De and 43.5 BLEU in WMT’14 En-Fr, beating several very strong baselines with less than half of the training memory.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at EACL 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers