03/05/2021

HyperGrid Transformers: Towards A Single Model for Multiple Tasks

Yi Tay, Zhe Zhao, Dara Bahri, Donald Metzler, DA-CHENG Juan

Keywords: Transformers, Multi-Task Learning

Abstract: Achieving state-of-the-art performance on natural language understanding tasks typically relies on fine-tuning a fresh model for every task. Consequently, this approach leads to a higher overall parameter cost, along with higher technical maintenance for serving multiple models. Learning a single multi-task model that is able to do well for all the tasks has been a challenging and yet attractive proposition. In this paper, we propose HyperGrid Transformers, a new Transformer architecture that leverages task-conditioned hyper networks for controlling its feed-forward layers. Specifically, we propose a decomposable hypernetwork that learns grid-wise projections that help to specialize regions in weight matrices for different tasks. In order to construct the proposed hypernetwork, our method learns the interactions and composition between a global (task-agnostic) state and a local task-specific state. We conduct an extensive set of experiments on GLUE/SuperGLUE. On the SuperGLUE test set, we match the performance of the state-of-the-art while being $16$ times more parameter efficient. Our method helps bridge the gap between fine-tuning and multi-task learning approaches.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICLR 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers