19/04/2021

Content-based models of quotation

Ansel MacLaughlin, David Smith

Keywords:

Abstract: We explore the task of quotability identification, in which, given a document, we aim to identify which of its passages are the most quotable, i.e. the most likely to be directly quoted by later derived documents. We approach quotability identification as a passage ranking problem and evaluate how well both feature-based and BERT-based (Devlin et al., 2019) models rank the passages in a given document by their predicted quotability. We explore this problem through evaluations on five datasets that span multiple languages (English, Latin) and genres of literature (e.g. poetry, plays, novels) and whose corresponding derived documents are of multiple types (news, journal articles). Our experiments confirm the relatively strong performance of BERT-based models on this task, with the best model, a RoBERTA sequential sentence tagger, achieving an average rho of 0.35 and NDCG@1, 5, 50 of 0.26, 0.31 and 0.40, respectively, across all five datasets.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at EACL 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers