08/12/2020

Sentiment Forecasting in Dialog

Zhongqing Wang, Xiujun Zhu, Yue Zhang, Shoushan Li, Guodong Zhou

Keywords:

Abstract: Sentiment forecasting in dialog aims to predict the polarity of next utterance to come, and can help speakers revise their utterances in sentimental utterances generation. However, the polarity of next utterance is normally hard to predict, due to the lack of content of next utterance (yet to come). In this study, we propose a Neural Sentiment Forecasting (NSF) model to address inherent challenges. In particular, we employ a neural simulation model to simulate the next utterance based on the context (previous utterances encountered). Moreover, we employ a sequence influence model to learn both pair-wise and seq-wise influence. Empirical studies illustrate the importance of proposed sentiment forecasting task, and justify the effectiveness of our NSF model over several strong baselines.

The video of this talk cannot be embedded. You can watch it here:
https://underline.io/lecture/6228-sentiment-forecasting-in-dialog
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at COLING 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers