19/04/2021

Neural-driven search-based paraphrase generation

Betty Fabre, Tanguy Urvoy, Jonathan Chevelu, Damien Lolive

Keywords:

Abstract: We study a search-based paraphrase generation scheme where candidate paraphrases are generated by iterated transformations from the original sentence and evaluated in terms of syntax quality, semantic distance, and lexical distance. The semantic distance is derived from BERT, and the lexical quality is based on GPT2 perplexity. To solve this multi-objective search problem, we propose two algorithms: Monte-Carlo Tree Search For Paraphrase Generation (MCPG) and Pareto Tree Search (PTS). We provide an extensive set of experiments on 5 datasets with a rigorous reproduction and validation for several state-of-the-art paraphrase generation algorithms. These experiments show that, although being non explicitly supervised, our algorithms perform well against these baselines.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at EACL 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers