14/09/2020

Interpretable dimensionally-consistent feature extraction from electrical network sensors

Laure Crochepierre, Lydia Boudjeloud-Assala, Vincent Barbesant

Keywords: grammar-guided genetic programming (gggp), supervised learning, feature extraction, interpretability, electrical power system

Abstract: Electrical power networks are heavily monitored systems, requiring operators to perform intricate information synthesis before understanding the underlying network state. Our study aims at helping this synthesis step by automatically creating features from the sensor data. We propose a supervised feature extraction approach using a grammar-guided evolution, which outputs interpretable and dimensionally consistent features. Operations restrictions on dimensions are introduced in the learning process through context-free grammars. They ensure coherence with physical laws, dimensional-consistency, and also introduce technical expertise in the created features. We compare our approach to other state-of-the-art feature extraction methods on a real dataset taken from the French electrical network sensors.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ECML PKDD 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers