Abstract:
The Test Laboratory Scheduling Problem (TLSP) and its subproblem TLSP-S are real-world industrial scheduling problems that are extensions of the Resource-Constrained Project Scheduling Problem (RCPSP). Besides several additional constraints, TLSP includes a grouping phase where the jobs to be scheduled have to be assembled from smaller tasks and derive their properties from this grouping. For TLSP-S such a grouping is already part of the input. In this work, we show how TLSP-S can be solved by Answer-set Programming extended with ideas from other constraint solving paradigms. We propose a novel and efficient encoding and apply an answer-set solver for constraint logic programs called clingcon. Additionally, we utilize our encoding in a Very Large Neighborhood Search framework and compare our methods with the state of the art approaches. Our approach provides new upper bounds and optimality proofs for several existing benchmark instances in the literature.