13/04/2021

Tight regret bounds for infinite-armed linear contextual bandits

Yingkai Li, Yining Wang, Xi Chen, Yuan Zhou

Keywords:

Abstract: Linear contextual bandit is a class of sequential decision-making problems with important applications in recommendation systems, online advertising, healthcare, and other machine learning-related tasks. While there is much prior research, tight regret bounds of linear contextual bandit with infinite action sets remain open. In this paper, we consider the linear contextual bandit problem with (changing) infinite action sets. We prove a regret upper bound on the order of O(d^2TT) (T) where d is the domain dimension and T is the time horizon. Our upper bound matches the previous lower bound of (d^2 TT) in [Li et al., 2019] up to iterated logarithmic terms.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AISTATS 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers