06/12/2020

A Tight Lower Bound and Efficient Reduction for Swap Regret

Shinji Ito

Keywords:

Abstract: Swap regret, a generic performance measure of online decision-making algorithms, plays an important role in the theory of repeated games, along with a close connection to correlated equilibria in strategic games. This paper shows an $\Omega( \sqrt{T N\log{N}} )$-lower bound for swap regret, where $T$ and $N$ denote the numbers of time steps and available actions, respectively. Our lower bound is tight up to a constant, and resolves an open problem mentioned, e.g., in the book by Nisan et al. (2007). Besides, we present a computationally efficient reduction method that converts no-external-regret algorithms to no-swap-regret algorithms. This method can be applied not only to the full-information setting but also to the bandit setting and provides a better regret bound than previous results.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at NeurIPS 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers