13/04/2021

Stochastic linear bandits robust to adversarial attacks

Ilija Bogunovic, Arpan Losalka, Andreas Krause, Jonathan Scarlett

Keywords:

Abstract: We consider a stochastic linear bandit problem in which the rewards are not only subject to random noise, but also adversarial attacks subject to a suitable budget C (i.e., an upper bound on the sum of corruption magnitudes across the time horizon). We provide two variants of a Robust Phased Elimination algorithm, one that knows C and one that does not. Both variants are shown to attain near-optimal regret in the non-corrupted case C = 0, while incurring additional additive terms respectively having a linear and quadratic dependency on C in general. We present algorithm-independent lower bounds showing that these additive terms are near-optimal. In addition, in a contextual setting, we revisit a setup of diverse contexts, and show that a simple greedy algorithm is provably robust with a near-optimal additive regret term, despite performing no explicit exploration and not knowing C.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AISTATS 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers