18/07/2021

Adversarial Combinatorial Bandits with General Non-linear Reward Functions

Yanjun Han, Yining Wang, Xi Chen

Keywords: Applications, Computer Vision, Applications, Computational Photography, Theory, Online Learning Theory

Abstract: In this paper we study the adversarial combinatorial bandit with a known non-linear reward function, extending existing work on adversarial linear combinatorial bandit. {The adversarial combinatorial bandit with general non-linear reward is an important open problem in bandit literature, and it is still unclear whether there is a significant gap from the case of linear reward, stochastic bandit, or semi-bandit feedback.} We show that, with $N$ arms and subsets of $K$ arms being chosen at each of $T$ time periods, the minimax optimal regret is $\widetilde\Theta_{d}(\sqrt{N^d T})$ if the reward function is a $d$-degree polynomial with $d< K$, and $\Theta_K(\sqrt{N^K T})$ if the reward function is not a low-degree polynomial. {Both bounds are significantly different from the bound $O(\sqrt{\mathrm{poly}(N,K)T})$ for the linear case, which suggests that there is a fundamental gap between the linear and non-linear reward structures.} Our result also finds applications to adversarial assortment optimization problem in online recommendation. We show that in the worst-case of adversarial assortment problem, the optimal algorithm must treat each individual $\binom{N}{K}$ assortment as independent.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICML 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers

 14:14