13/04/2021

Algorithms for fairness in sequential decision making

Min Wen, Osbert Bastani, Ufuk Topcu

Keywords:

Abstract: It has recently been shown that if feedback effects of decisions are ignored, then imposing fairness constraints such as demographic parity or equality of opportunity can actually exacerbate unfairness. We propose to address this challenge by modeling feedback effects as Markov decision processes (MDPs). First, we propose analogs of fairness properties for the MDP setting. Second, we propose algorithms for learning fair decision-making policies for MDPs. Finally, we demonstrate the need to account for dynamical effects using simulations on a loan applicant MDP.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AISTATS 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers