12/07/2020

Model-Agnostic Characterization of Fairness Trade-offs

Joon Kim, Jiahao Chen, Ameet Talwalkar

Keywords: Fairness, Equity, Justice, and Safety

Abstract: There exist several inherent trade-offs while designing a fair model, such as those between the model’s predictive accuracy and fairness, or even among different notions of fairness. In practice, exploring these trade-offs requires significant human and computational resources. We propose a diagnostic to enable practitioners to explore these trade-offs without training a single model. Our work hinges on the observation that many widely-used fairness definitions can be expressed via the fairness-confusion tensor, an object obtained by splitting the traditional confusion matrix according to protected data attributes. Our diagnostic optimizes accuracy and fairness objectives directly over the elements in this tensor in a data-dependent, yet model-agnostic fashion. We further leverage our tensor-based perspective to generalize existing theoretical impossibility results to a wider range of fairness definitions. Finally, we demonstrate the usefulness of the proposed diagnostic on synthetic and real datasets.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICML 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers