13/04/2021

Dirichlet pruning for convolutional neural networks

Kamil Adamczewski, Mijung Park

Keywords:

Abstract: We introduce Dirichlet pruning, a novel post-processing technique to transform a large neural network model into a compressed one. Dirichlet pruning is a form of structured pruning which assigns the Dirichlet distribution over each layer’s channels in convolutional layers (or neurons in fully-connected layers), and learns the parameters of the distribution over these units using variational inference. The learnt parameters allow us to informatively and intuitively remove unimportant units, resulting in a compact architecture containing only crucial features for a task at hand. This method yields low GPU footprint, as the number of parameters is linear in the number of channels (or neurons) and training requires as little as one epoch to converge. We perform extensive experiments, in particular on larger architectures such as VGG and WideResNet (94

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AISTATS 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers