17/08/2020

Learned motion matching

Daniel Holden, Oussama Kanoun, Maksym Perepichka, Tiberiu Popa

Keywords: neural networks, animation, character animation, motion matching, generative models

Abstract: In this paper we present a learned alternative to the Motion Matching algorithm which retains the positive properties of Motion Matching but additionally achieves the scalability of neural-network-based generative models. Although neural-network-based generative models for character animation are capable of learning expressive, compact controllers from vast amounts of animation data, methods such as Motion Matching still remain a popular choice in the games industry due to their flexibility, predictability, low preprocessing time, and visual quality - all properties which can sometimes be difficult to achieve with neural-network-based methods. Yet, unlike neural networks, the memory usage of such methods generally scales linearly with the amount of data used, resulting in a constant trade-off between the diversity of animation which can be produced and real world production budgets. In this work we combine the benefits of both approaches and, by breaking down the Motion Matching algorithm into its individual steps, show how learned, scalable alternatives can be used to replace each operation in turn. Our final model has no need to store animation data or additional matching meta-data in memory, meaning it scales as well as existing generative models. At the same time, we preserve the behavior of Motion Matching, retaining the quality, control, and quick iteration time which are so important in the industry.

The video of this talk cannot be embedded. You can watch it here:
https://dl.acm.org/doi/10.1145/3386569.3392440#sec-supp
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at SIGGRAPH 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers