08/12/2020

Hitachi at SemEval-2020 Task 7: Stacking at Scale with Heterogeneous Language Models for Humor Recognition

Terufumi Morishita, Gaku Morio, Hiroaki Ozaki, Toshinori Miyoshi

Keywords:

Abstract: This paper describes the winning system for SemEval-2020 task 7: Assessing Humor in Edited News Headlines. Our strategy is Stacking at Scale (SaS) with heterogeneous pre-trained language models (PLMs) such as BERT and GPT-2. SaS first performs fine-tuning on numbers of PLMs with various hyperparameters and then applies a powerful stacking ensemble on top of the fine-tuned PLMs. Our experimental results show that SaS outperforms a naive average ensemble, leveraging weaker PLMs as well as high-performing PLMs. Interestingly, the results show that SaS captured non-funny semantics. Consequently, the system was ranked 1st in all subtasks by significant margins compared with other systems.

The video of this talk cannot be embedded. You can watch it here:
https://underline.io/lecture/6394-hitachi-at-semeval-2020-task-7-stacking-at-scalewith-heterogeneous-language-models-for-humor-recognition
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at COLING Workshops 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers