05/01/2021

The Laughing Machine: Predicting Humor in Video

Yuta Kayatani, Zekun Yang, Mayu Otani, Noa Garcia, Chenhui Chu, Yuta Nakashima, Haruo Takemura

Keywords:

Abstract: Humor is a very important communication tool; yet, it is an open problem for machines to understand humor. In this paper, we build a new multimodal dataset for humor prediction that includes subtitles and video frames, as well as humor labels associated with video's timestamps. On top of it, we present a model to predict whether a subtitle causes laughter. Our model uses the visual modality through facial expression and character name recognition, together with the verbal modality, to explore how the visual modality helps. In addition, we use an attention mechanism to adjust the weight for each modality to facilitate humor prediction. Interestingly, our experimental results show that the performance boost by combinations of different modalities, and the attention mechanism and the model mostly relies on the verbal modality.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at WACV 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers