08/07/2020

Asynchronous Majority Dynamics in Preferential Attachment Trees

Maryam Bahrani, Nicole Immorlica, Divyarthi Mohan, S. Matthew Weinberg

Keywords: Opinion Dynamics, Information Cascades, Preferential Attachment, Majority Dynamics, non-Bayesian Asynchronous Learning, Stochastic Processes

Abstract: We study information aggregation in networks where agents make binary decisions (labeled incorrect or correct). Agents initially form independent private beliefs about the better decision, which is correct with probability 1/2+δ. The dynamics we consider are asynchronous (each round, a single agent updates their announced decision) and non-Bayesian (agents simply copy the majority announcements among their neighbors, tie-breaking in favor of their private signal). Our main result proves that when the network is a tree formed according to the preferential attachment model [Barabási and Albert, 1999], with high probability, the process stabilizes in a correct majority within O(n log n/log log n) rounds. We extend our results to other tree structures, including balanced M-ary trees for any M.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICALP 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers