19/01/2020

Semantics of Higher-Order Probabilistic Programs with Conditioning

Fredrik Dahlqvist, Dexter Kozen

Keywords: semantics, type system, Probabilistic programming

Abstract: We present a denotational semantics for higher-order probabilistic programs in terms of linear operators between Banach spaces. Our semantics is rooted in the classical theory of Banach spaces and their tensor products, but bears similarities with the well-known semantics of higher-order programs a la Scott through the use of ordered Banach spaces which allow definitions in terms of fixed points. Our semantics is a model of intuitionistic linear logic: it is based on a symmetric monoidal closed category of ordered Banach spaces which treats randomness as a linear resource, but by constructing an exponential comonad we can also accommodate non-linear reasoning. We apply our semantics to the verification of the classical Gibbs sampling algorithm.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at POPL 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers