19/10/2020

Multi-channel sellers traffic allocation in large-scale e-commerce promotion

Shen Xin, Yizhou Ye, Martin Ester, Cheng Long, Jie Zhang, Zhao Li, Kaiying Yuan, Yanghua Li

Keywords: online shopping, e-commerce, online promotion, multi-channel sellers traffic allocation

Abstract: Large-scale online promotions, such as Double 11 and Black Friday, are of great value to e-commerce platforms nowadays. Traditional methods are not successful when we aim to maximize global Gross Merchandise Volume (GMV) in the promotion scenarios due to three limitations. The first is that the GMV of sellers varies significantly from daily scenarios to promotions. Second, these methods do not consider explosive demands in promotions, so that a consumer may fail to purchase some popular items due to sellers’ limited capacities. Third, the traffic distribution over sellers presents divergence in different channels, thus rendering the performance of the traditional single-channel methods far from optimal in creating commercial values. To address these problems, we design a Multi-Channel Sellers Traffic Allocation (MCSTA) optimization model to obtain optimal page view (PV) distribution concerning global GMV. Then we propose a general constrained non-smooth convex optimization solution with a Multi-Objective Shortest Distance (MOSD) hyperparameter tuning method to solve MCSTA. This is the first work to systematically address this issue in the scenario of large-scale online promotions. The empirical results show that MCSTA achieves significant improvement of GMV by 1.1

The video of this talk cannot be embedded. You can watch it here:
https://dl.acm.org/doi/10.1145/3340531.3412730#sec-supp
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CIKM 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers