14/06/2020

Projection & Probability-Driven Black-Box Attack

Jie Li, Rongrong Ji, Hong Liu, Jianzhuang Liu, Bineng Zhong, Cheng Deng, Qi Tian

Keywords: adversarial example, black-box attack, projection matrix, compressed sensing, random walk, low-frequency perturbation

Abstract: Generating adversarial examples in a black-box setting retains a signicant challenge with vast practical application prospects. In particular, existing black-box attacks suffer from the need for excessive queries, as it is non-trivial to nd an appropriate direction to optimize in the high-dimensional space. In this paper, we propose Projection & Probability-driven Black-box Attack (PPBA) to tackle this problem by reducing the solution space and providing better optimization. For reducing the solution space, we rst model the adversarial perturbation optimization problem as a process of recovering frequency-sparse perturbations with compressed sensing, under the setting that random noise in the low-frequency space is more likely to be adversarial. We then propose a simple method to construct a low-frequency constrained sensing matrix, which works as a plug-and-play projection matrix to reduce the dimensionality. Such a sensing matrix is shown to be exible enough to be integrated into existing methods like NES and Bandits$_{TD}$. For better optimization, we perform a random walk with a probability-driven strategy, which utilizes all queries over the whole progress to make full use of the sensing matrix for a less query budget. Extensive experiments show that our method requires at most 24% fewer queries with a higher attack success rate compared with state-of-the-art approaches. Finally, the attack method is evaluated on the real-world online service, i.e., Google Cloud Vision API, which further demonstrates our practical potentials.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CVPR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers