06/12/2021

Fast Routing under Uncertainty: Adaptive Learning in Congestion Games via Exponential Weights

Dong Quan Vu, Kimon Antonakopoulos, Panayotis Mertikopoulos

Keywords: theory

Abstract: We examine an adaptive learning framework for nonatomic congestion games where the players' cost functions may be subject to exogenous fluctuations (e.g., due to disturbances in the network, variations in the traffic going through a link). In this setting, the popular multiplicative/ exponential weights algorithm enjoys an $\mathcal{O}(1/\sqrt{T})$ equilibrium convergence rate; however, this rate is suboptimal in static environments---i.e., when the network is not subject to randomness. In this static regime, accelerated algorithms achieve an $\mathcal{O}(1/T^{2})$ convergence speed, but they fail to converge altogether in stochastic problems. To fill this gap, we propose a novel, adaptive exponential weights method---dubbed AdaWeight---that seamlessly interpolates between the $\mathcal{O}(1/T^{2})$ and $\mathcal{O}(1/\sqrt{T})$ rates in the static and stochastic regimes respectively. Importantly, this "best-of-both-worlds" guarantee does not require any prior knowledge of the problem's parameters or tuning by the optimizer; in addition, the method's convergence speed depends subquadratically on the size of the network (number of vertices and edges), so it scales gracefully to large, real-life urban networks.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at NeurIPS 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers