30/11/2020

Accurate Arbitrary-Shaped Scene Text Detection via Iterative Polynomial Parameter Regression

Jiahao Shi, Long Chen, Feng Su

Keywords:

Abstract: A number of scene text in natural images have irregular shapes which often cause significant difficulties for a text detector. In this paper, we propose a robust scene text detection method based on a parameterized shape modeling and regression scheme for text with arbitrary shapes. The shape model geometrically depicts a text region with a polynomial centerline and a series of width cues to capture global shape characteristics (e.g. smoothness) and local shapes of the text respectively for accurate text localization, which differs from previous text region modeling schemes based on discrete boundary points or pixels. We further propose a text detection network PolyPRNet equipped with an iterative regression module for text's shape parameters, which effectively enhances the detection accuracy of arbitrary-shaped text. Our method achieves state-of-the-art text detection results on several standard benchmarks.

The video of this talk cannot be embedded. You can watch it here:
https://accv2020.github.io/miniconf/poster_313.html
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ACCV 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers