30/11/2020

Learning Local Feature Descriptors for Multiple Object Tracking

Dmytro Borysenko, Dmytro Mykheievskyi, Viktor Porokhonskyy

Keywords:

Abstract: The present study aims at learning class-agnostic embedding, which is suitable for Multiple Object Tracking (MOT). We demonstrate that the learning of local feature descriptors could provide a sufficient level of generalization. Proposed embedding function exhibits on-par performance with its dedicated person re-identification counterparts in their target domain and outperforms them in others. Through its utilization, our solutions achieve state-of-the-art performance in a number of MOT benchmarks, which includes CVPR'19 Tracking Challenge.

The video of this talk cannot be embedded. You can watch it here:
https://accv2020.github.io/miniconf/poster_494.html
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ACCV 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers