04/11/2020

LinnOS: Predictability on Unpredictable Flash Storage with a Light Neural Network

Mingzhe Hao, Levent Toksoz, Nanqinqin Li, Edward Edberg Halim, Henry Hoffmann, Haryadi S. Gunawi

Keywords:

Abstract: This paper presents LinnOS, an operating system that leverages a light neural network for inferring SSD performance at a very fine — per-IO — granularity and helps parallel storage applications achieve performance predictability. LinnOS supports black-box devices and real production traces without requiring any extra input from users, while outperforming industrial mechanisms and other approaches. Our evaluation shows that, compared to hedging and heuristic-based methods, LinnOS improves the average I/O latencies by 9.6-79.6% with 87-97% inference accuracy and 4-6μs inference overhead for each I/O, demonstrating that it is possible to incorporate machine learning inside operating systems for real-time decision-making.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at OSDI 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers