14/06/2020

Camera Trace Erasing

Chang Chen, Zhiwei Xiong, Xiaoming Liu, Feng Wu

Keywords: image anti-forensics, image denoising, unsupervised deep learning

Abstract: Camera trace is a unique noise produced in digital imaging process. Most existing forensic methods analyze camera trace to identify image origins. In this paper, we address a new low-level vision problem, camera trace erasing, to reveal the weakness of trace-based forensic methods. A comprehensive investigation on existing anti-forensic methods reveals that it is non-trivial to effectively erase camera trace while avoiding the destruction of content signal. To reconcile these two demands, we propose Siamese Trace Erasing (SiamTE), in which a novel hybrid loss is designed on the basis of Siamese architecture for network training. Specifically, we propose embedded similarity, truncated fidelity, and cross identity to form the hybrid loss. Compared with existing anti-forensic methods, SiamTE has a clear advantage for camera trace erasing, which is demonstrated in three representative tasks.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CVPR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers