14/06/2020

Learning Unseen Concepts via Hierarchical Decomposition and Composition

Muli Yang, Cheng Deng, Junchi Yan, Xianglong Liu, Dacheng Tao

Keywords: compositional concepts, zero-shot learning, contextual relations, compositional generalization, attribute-object pairs, semi-positive samples, vision and language, computer vision, deep learning

Abstract: Composing and recognizing new concepts from known sub-concepts has been a fundamental and challenging vision task, mainly due to 1) the diversity of sub-concepts and 2) the intricate contextuality between sub-concepts and their corresponding visual features. However, most of the current methods simply treat the contextuality as rigid semantic relationships and fail to capture fine-grained contextual correlations. We propose to learn unseen concepts in a hierarchical decomposition-and-composition manner. Considering the diversity of sub-concepts, our method decomposes each seen image into visual elements according to its labels, and learns corresponding sub-concepts in their individual subspaces. To model intricate contextuality between sub-concepts and their visual features, compositions are generated from these subspaces in three hierarchical forms, and the composed concepts are learned in a unified composition space. To further refine the captured contextual relationships, adaptively semi-positive concepts are defined and then learned with pseudo supervision exploited from the generated compositions. We validate the proposed approach on two challenging benchmarks, and demonstrate its superiority over state-of-the-art approaches.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CVPR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers