14/06/2020

Disentangling Physical Dynamics From Unknown Factors for Unsupervised Video Prediction

Vincent Le Guen, Nicolas Thome

Keywords: video prediction, disentanglement, partial differential equations, dynamical systems, physics, predictive models, forecasting, deep learning, recurrent neural network, data assimilation

Abstract: Leveraging physical knowledge described by partial differential equations (PDEs) is an appealing way to improve unsupervised video forecasting models. Since physics is too restrictive for describing the full visual content of generic video sequences, we introduce PhyDNet, a two-branch deep architecture, which explicitly disentangles PDE dynamics from unknown complementary information. A second contribution is to propose a new recurrent physical cell (PhyCell), inspired from data assimilation techniques, for performing PDE-constrained prediction in latent space. Extensive experiments conducted on four various datasets show the ability of PhyDNet to outperform state-of-the-art methods. Ablation studies also highlight the important gain brought out by both disentanglement and PDE-constrained prediction. Finally, we show that PhyDNet presents interesting features for dealing with missing data and long-term forecasting.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CVPR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers