14/06/2020

Globally Optimal Contrast Maximisation for Event-Based Motion Estimation

Daqi Liu, Álvaro Parra, Tat-Jun Chin

Keywords: dynamic vision sensor, global optimisation, branch and bound, motion estimation

Abstract: Contrast maximisation estimates the motion captured in an event stream by maximising the sharpness of the motion-compensated event image. To carry out contrast maximisation, many previous works employ iterative optimisation algorithms, such as conjugate gradient, which require good initialisation to avoid converging to bad local minima. To alleviate this weakness, we propose a new globally optimal event-based motion estimation algorithm. Based on branch-and-bound (BnB), our method solves rotational (3DoF) motion estimation on event streams, which supports practical applications such as video stabilisation and attitude estimation. Underpinning our method are novel bounding functions for contrast maximisation, whose theoretical validity is rigorously established. We show concrete examples from public datasets where globally optimal solutions are vital to the success of contrast maximisation. Despite its exact nature, our algorithm is currently able to process a 50,000-event input in approx 300 seconds (a locally optimal solver takes approx 30 seconds on the same input), and has the potential to be further speeded-up using GPUs.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CVPR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers