14/06/2020

A Context-Aware Loss Function for Action Spotting in Soccer Videos

Anthony Cioppa, Adrien Deliège, Silvio Giancola, Bernard Ghanem, Marc Van Droogenbroeck, Rikke Gade, Thomas B. Moeslund

Keywords: action spotting, highlights generation, sports video analysis, soccernet, activitynet, temporal segmentation, semantic context, loss function, event detection, activity localization

Abstract: In video understanding, action spotting consists in temporally localizing human-induced events annotated with single timestamps. In this paper, we propose a novel loss function that specifically considers the temporal context naturally present around each action, rather than focusing on the single annotated frame to spot. We benchmark our loss on a large dataset of soccer videos, SoccerNet, and achieve an improvement of 12.8% over the baseline. We show the generalization capability of our loss for generic activity proposals and detection on ActivityNet, by spotting the beginning and the end of each activity. Furthermore, we provide an extended ablation study and display challenging cases for action spotting in soccer videos. Finally, we qualitatively illustrate how our loss induces a precise temporal understanding of actions and show how such semantic knowledge can be used for automatic highlights generation.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CVPR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers