14/06/2020

Weakly-Supervised Mesh-Convolutional Hand Reconstruction in the Wild

Dominik Kulon, Riza Alp Güler, Iasonas Kokkinos, Michael M. Bronstein, Stefanos Zafeiriou

Keywords: hand pose estimation, hand reconstruction, mesh reconstruction, geometric deep learning, graph neural networks, weak supervision

Abstract: We introduce a simple and effective network architecture for monocular 3D hand pose estimation consisting of an image encoder followed by a mesh convolutional decoder that is trained through a direct 3D hand mesh reconstruction loss. We train our network by gathering a large-scale dataset of hand action in YouTube videos and use it as a source of weak supervision. Our weakly-supervised mesh convolutions-based system largely outperforms state-of-the-art methods, even halving the errors on the in the wild benchmark. The dataset and additional resources are available at https://arielai.com/mesh_hands.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CVPR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers