14/06/2020

McFlow: Monte Carlo Flow Models for Data Imputation

Trevor W. Richardson, Wencheng Wu, Lei Lin, Beilei Xu, Edgar A. Bernal

Keywords: data imputation, alternating learning, normalizing flow models, explicit and tractable generative models, deep unsupervised learning, conditional maximum likelihood estimation, partially observed data, learning to optimize, nonlinear independent component analysis, latent variable sampling

Abstract: We consider the topic of data imputation, a foundational task in machine learning that addresses issues with missing data. To that end, we propose MCFlow, a deep framework for imputation that leverages normalizing flow generative models and Monte Carlo sampling. We address the causality dilemma that arises when training models with incomplete data by introducing an iterative learning scheme which alternately updates the density estimate and the values of the missing entries in the training data. We provide extensive empirical validation of the effectiveness of the proposed method on standard multivariate and image datasets, and benchmark its performance against state-of-the-art alternatives. We demonstrate that MCFlow is superior to competing methods in terms of the quality of the imputed data, as well as with regards to its ability to preserve the semantic structure of the data.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CVPR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers