02/02/2021

Deep Low-Contrast Image Enhancement using Structure Tensor Representation

Hyungjoo Jung, Hyunsung Jang, Namkoo Ha, Kwanghoon Sohn

Keywords:

Abstract: We present a new deep learning framework for low-contrast image enhancement, which trains the network using the multi-exposure sequences rather than explicit ground-truth images. The purpose of our method is to enhance a low-contrast image so as to contain abundant details in various exposure levels. To realize this, we propose to design the loss function using the structure tensor representation, which has been widely used as high-dimensional image contrast. Our loss function penalizes the difference of the structure tensor between the network output and the multi-exposure images in a multi-scale manner. Eventually, the network trained by the loss function produces a high-quality image approximating the overall contrast of the sequence. We provide in-depth analysis on our method and comparison with conventional loss functions. Quantitative and qualitative evaluations demonstrate that the proposed method outperforms the existing state-of-the-art approaches in various benchmarks.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38948530
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers