02/11/2020

Task-aware separation for the DCASE 2020 task 4 sound event detection and separation challenge

Samuele Cornell, Michel Olvera, Manuel Pariente, Giovanni Pepe, Emanuele Principi, Leonardo Gabrielli, Stefano Squartini

Keywords:

Abstract: Source Separation is often used as a pre-processing step in many signal-processing tasks. In this work we propose a novel approach for combined Source Separation and Sound Event Detection in which a Source Separation algorithm is used to enhance the Sound Even -Detection back-end performance. In particular, we present a permutation-invariant training scheme for optimizing the Source Separation system directly with the back-end Sound Event Detection objective without requiring joint training or fine-tuning of the two systems. We show that such an approach has significant advantages over the more standard approach of training the Source Separation system separately using only a Source Separation based objective such as Scale-Invariant Signal-To-Distortion Ratio. On the 2020 Detection and Classification of Acoustic Scenes and Events Task 4 Challenge our proposed approach is able to outperform the baseline source separation system by more than one percent in event-based macro <i>F</i><sub>1</sub> score on the development set with significantly less computational requirements.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at DCASE 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers