02/11/2020

A multi-resolution approach to sound event detection in DCASE 2020 Task4

Diego Benito-Gorron, Daniel Ramos, Doroteo T. Toledano

Keywords:

Abstract: In this paper, we propose a multi-resolution analysis for feature extraction in Sound Event Detection. Because of the specific temporal and spectral characteristics of the different acoustic events, we hypothesize that different time-frequency resolutions can be more appropriate to locate each sound category. We carry out our experiments using the DESED dataset in the context of the DCASE 2020 Task 4 challenge, where the combination of up to five different time-frequency resolutions via model fusion is able to outperform the baseline results. In addition, we propose class-specific thresholds for the <i>F</i><sub>1</sub>-score metric, further improving the results over the Validation and Public Evaluation sets.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at DCASE 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers