02/11/2020

Using look, listen, and learn embeddings for detecting anomalous sounds in machine condition monitoring

Kevin Wilkinghoff

Keywords:

Abstract: The goal of anomalous sound detection is to unsupervisedly train a system to distinguish normal from anomalous sounds that substantially differ from the normal sounds used for training. In this paper, a system based on Look, Listen, and Learn embeddings, which participated in task 2 “Unsupervised Detection of Anomalous Sounds for Machine Condition Monitoring” of the DCASE challenge 2020 and is adapted from an open-set machine listening system, is presented. The experimental results show that the presented system significantly outperforms the baseline system of the challenge both in detecting outliers and in recognizing the correct machine type or exact machine id. Moreover, it is shown that an ensemble consisting of the presented system and the baseline system performs even better than both of its components.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at DCASE 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers