22/06/2020

Solving tall dense linear programs in nearly linear time

Jan Brand, Yin Tat Lee, Aaron Sidford, Zhao Song

Keywords: linear program, interior point method, nearly linear time

Abstract: In this paper we provide an O(nd+d3) time randomized algorithm for solving linear programs with d variables and n constraints with high probability. To obtain this result we provide a robust, primal-dual O(√d)-iteration interior point method inspired by the methods of Lee and Sidford (2014, 2019) and show how to efficiently implement this method using new data-structures based on heavy-hitters, the Johnson–Lindenstrauss lemma, and inverse maintenance. Interestingly, we obtain this running time without using fast matrix multiplication and consequently, barring a major advance in linear system solving, our running time is near optimal for solving dense linear programs among algorithms that do not use fast matrix multiplication.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at STOC 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers