03/08/2020

Model-Augmented Conditional Mutual Information Estimation for Feature Selection

Alan Yang, AmirEmad Ghassami, Maxim Raginsky, Negar Kiyavash, Elyse Rosenbaum

Keywords:

Abstract: Markov blanket feature selection, while theoretically optimal, is generally challenging to implement. This is due to the shortcomings of existing approaches to conditional independence (CI) testing, which tend to struggle either with the curse of dimensionality or computational complexity. We propose a novel two-step approach which facilitates Markov blanket feature selection in high dimensions. First, neural networks are used to map features to low-dimensional representations. In the second step, CI testing is performed by applying the $k$-NN conditional mutual information estimator to the learned feature maps. The mappings are designed to ensure that mapped samples both preserve information and share similar information about the target variable if and only if they are close in Euclidean distance. We show that these properties boost the performance of the $k$-NN estimator in the second step. The performance of the proposed method is evaluated on both synthetic and real data.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at UAI 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers